podmoskovnik: (Default)
Обнаружил интереснейший доклад ГУ-ВШЭ с анализом баллов ЕГЭ абитуриентов по итогам вузовского приема 2009 года.

Очень интересные сопоставления и классификации вузов по средним и минимальным баллам, специальностей в разных вузах и т.п.

Рекомендуется юношам, обдумывающим житье, и всем остальным заинтересованным лицам.

http://www.hse.ru/data/057/361/1225/priem2009_18_2.pdf
podmoskovnik: (Default)
Обнаружил интереснейший доклад ГУ-ВШЭ с анализом баллов ЕГЭ абитуриентов по итогам вузовского приема 2009 года.

Очень интересные сопоставления и классификации вузов по средним и минимальным баллам, специальностей в разных вузах и т.п.

Рекомендуется юношам, обдумывающим житье, и всем остальным заинтересованным лицам.

http://www.hse.ru/data/057/361/1225/priem2009_18_2.pdf
podmoskovnik: (Default)
Настоятельно рекомендую всем интересующимся статью с хорошим разбором измерительных свойств ЕГЭ и методики пересчета первичных баллов в тестовые: http://nonlin.ru/files/uploads/podlazov/EGE/EGE.pdf.

PS Видимо, когда-то я уже читал ее, и некоторые слова и фразы пролезли в мои тексты. Приношу автору глубочайшие извинения за невольные заимствования.
podmoskovnik: (Default)
Настоятельно рекомендую всем интересующимся статью с хорошим разбором измерительных свойств ЕГЭ и методики пересчета первичных баллов в тестовые: http://nonlin.ru/files/uploads/podlazov/EGE/EGE.pdf.

PS Видимо, когда-то я уже читал ее, и некоторые слова и фразы пролезли в мои тексты. Приношу автору глубочайшие извинения за невольные заимствования.
podmoskovnik: (Default)
disclaimer - идея взята отсюда.

Задачка по теории вероятностей.
Дано: часть A ЕГЭ 2009 года по математике содержала 10 задач с выбором ответа из четырех вариантов. Чтобы сдать ЕГЭ на положительную оценку, достаточно было набрать четыре балла.
Вопрос 1: каков шанс сдать ЕГЭ на положительную оценку, заполнив только часть A наугад?
Вопрос 2: а с пересдачей?

Ответ 1: 22.4%
Ответ 2: 39.8%

А теперь посмотрим еще раз на распределение оценок по математике.

Так вот, похоже, левая ступенька на распределении - это как раз заполнявшие часть A наугад.
Действительно, однократная сдача с заполнением наугад дает биномиальное распределение оценок с пиком на 2 - 3 баллах. Сдача с пересдачей в случае несдачи с первого раза дает двугорбое распределение с пиками на 4 и 2 баллах.

А теперь эксперимент.
Сообщалось, что математику не сдали с первого раза 44000 человек, из них 33000 пришли пересдавать. Предположим, что все эти несдавшие заполняли задание наугад.
44000 не сдавших с первой попытки - это те, кому "не повезло" при сдаче наугад, значит, всего сдававших наугад было 44000/(1-0.224) = 56700 "гадальщиков".
Из них 14100 человек сдавали экзамен один раз; это дает 11000 не пришедших пересдавать, и еще 42.5 тысячи - дважды, они дали 33000 пересдававших.

Если теперь нарисовать построить распределения баллов от этих 14 и 42 тысяч и вычесть их из общего распределения, получится следующее.

Похоже, гипотеза о сдаче наугад действительно правдоподобно описывает ступеньку на распределении баллов, несмотря на все упрощения модели: некоторые из сдающих могли знать ответы на 1, 2 или 3 задачи, это дает дополнительные распределения, сдвинутые правее.
Кстати, если знать ответ на 1 вопрос, экзамен сдается с 1 раза с вероятностью 40%, со второго - 64%.
Если знать ответ на 2 вопроса - 63% и 76% соответственно.

Кстати, для физики-2009 подбор тоже неплохо работал. При проходном балле 8 и 25 задачах с вариантами ответов вероятность сдать экзамен наугад составляет 27%. Правда, не было пересдачи.

В 2010 году части A в математике не будет. Вопрос: что будет с результатами?
И еще одна задача по теории вероятностей в качестве бонуса. Из 33000 человек, не сдавших математику с первого раза 4 июня, 87% успешно сдали ее со второго раза 20 июня. Какова вероятность этого события?
podmoskovnik: (Default)
disclaimer - идея взята отсюда.

Задачка по теории вероятностей.
Дано: часть A ЕГЭ 2009 года по математике содержала 10 задач с выбором ответа из четырех вариантов. Чтобы сдать ЕГЭ на положительную оценку, достаточно было набрать четыре балла.
Вопрос 1: каков шанс сдать ЕГЭ на положительную оценку, заполнив только часть A наугад?
Вопрос 2: а с пересдачей?

Ответ 1: 22.4%
Ответ 2: 39.8%

А теперь посмотрим еще раз на распределение оценок по математике.

Так вот, похоже, левая ступенька на распределении - это как раз заполнявшие часть A наугад.
Действительно, однократная сдача с заполнением наугад дает биномиальное распределение оценок с пиком на 2 - 3 баллах. Сдача с пересдачей в случае несдачи с первого раза дает двугорбое распределение с пиками на 4 и 2 баллах.

А теперь эксперимент.
Сообщалось, что математику не сдали с первого раза 44000 человек, из них 33000 пришли пересдавать. Предположим, что все эти несдавшие заполняли задание наугад.
44000 не сдавших с первой попытки - это те, кому "не повезло" при сдаче наугад, значит, всего сдававших наугад было 44000/(1-0.224) = 56700 "гадальщиков".
Из них 14100 человек сдавали экзамен один раз; это дает 11000 не пришедших пересдавать, и еще 42.5 тысячи - дважды, они дали 33000 пересдававших.

Если теперь нарисовать построить распределения баллов от этих 14 и 42 тысяч и вычесть их из общего распределения, получится следующее.

Похоже, гипотеза о сдаче наугад действительно правдоподобно описывает ступеньку на распределении баллов, несмотря на все упрощения модели: некоторые из сдающих могли знать ответы на 1, 2 или 3 задачи, это дает дополнительные распределения, сдвинутые правее.
Кстати, если знать ответ на 1 вопрос, экзамен сдается с 1 раза с вероятностью 40%, со второго - 64%.
Если знать ответ на 2 вопроса - 63% и 76% соответственно.

Кстати, для физики-2009 подбор тоже неплохо работал. При проходном балле 8 и 25 задачах с вариантами ответов вероятность сдать экзамен наугад составляет 27%. Правда, не было пересдачи.

В 2010 году части A в математике не будет. Вопрос: что будет с результатами?
И еще одна задача по теории вероятностей в качестве бонуса. Из 33000 человек, не сдавших математику с первого раза 4 июня, 87% успешно сдали ее со второго раза 20 июня. Какова вероятность этого события?
podmoskovnik: (Default)
Заинтригованный статьей Евг. Бунимовича в Новой Газете, начал искать статистику сдачи ЕГЭ.
И только через неделю Зоркий Сокол обнаружил, что в его темнице нет четвертой стены выяснил, что она преспокойно лежит на портале ЕГЭ под конспиративным псевдонимом Соответствие первичных и тестовых баллов.
Так что кто интересуется - велкам.
А я, как обычно, построил графики.
много графиков и никаких разоблачений )
Еще можно почитать по теме:
Демонстрационные варианты ЕГЭ
Рецензия
[personal profile] a_shen на вариант ЕГЭ по математике (и ссылка на предыдущую рецензию внутри)
Анализ результатов ЕГЭ по математике - 2009
Обсуждение варианта по математике - 2010 на портале ЕГЭ

UPD: нашлись официальные графики ЕГЭ-2009 (правда, не от первичного балла, а от тестового - следите за руками (за частотой столбиков)!)
http://www.edu.ru/index.php?page_id=5&topic_id=19&sid=9590 (via [personal profile] hina_chleck )

podmoskovnik: (Default)
Заинтригованный статьей Евг. Бунимовича в Новой Газете, начал искать статистику сдачи ЕГЭ.
И только через неделю Зоркий Сокол обнаружил, что в его темнице нет четвертой стены выяснил, что она преспокойно лежит на портале ЕГЭ под конспиративным псевдонимом Соответствие первичных и тестовых баллов.
Так что кто интересуется - велкам.
А я, как обычно, построил графики.
много графиков и никаких разоблачений )
Еще можно почитать по теме:
Демонстрационные варианты ЕГЭ
Рецензия
[personal profile] a_shen на вариант ЕГЭ по математике (и ссылка на предыдущую рецензию внутри)
Анализ результатов ЕГЭ по математике - 2009
Обсуждение варианта по математике - 2010 на портале ЕГЭ

UPD: нашлись официальные графики ЕГЭ-2009 (правда, не от первичного балла, а от тестового - следите за руками (за частотой столбиков)!)
http://www.edu.ru/index.php?page_id=5&topic_id=19&sid=9590 (via [personal profile] hina_chleck )

Profile

podmoskovnik: (Default)
podmoskovnik

November 2016

S M T W T F S
  12345
6789101112
13141516171819
2021 2223242526
27282930   

Syndicate

RSS Atom

Style Credit

Expand Cut Tags

No cut tags
Page generated Sep. 25th, 2017 08:27 pm
Powered by Dreamwidth Studios